

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

Monolithic Linear IC For Car Radio and Car Stereo 5W Power Amplifier with Very Few External Parts

Overview

The LA4425PV is a 5W power amplifier with very few external parts. Encapsulated in a surface mount package [SSOP44K (275 mil)], it is designed for operation without a heat sink. Only two external parts (Only IN/OUT coupling capacitors). Almost no evaluation, adjustment and check of its functions as a power IC required, enabling control to be simplified and set patterns to be further miniaturized.

Functions

- Wide operation supply range $\rightarrow 5$ to 16V
- On-chip protection:
- Over-voltage protection
- Thermal protection
- Output D.C. short protection .
- On-chip pop noise reducing circuit

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

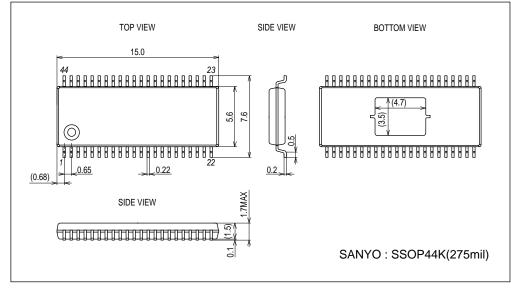
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	$Rg = 0\Omega$	18	V
Surge maximum supply voltage	V _{CC} surge	Giant pulse 200ms	50	V
		Rise time 1ms		
Maximum output current	I _O peak		3.3	А
Allowable power dissipation	Pd max	When mounted on the specified PCB	5.15	W
Operating temperature	Topr		-40 to +85	°C
Storage temperature	Tstg		-40 to +150	°C

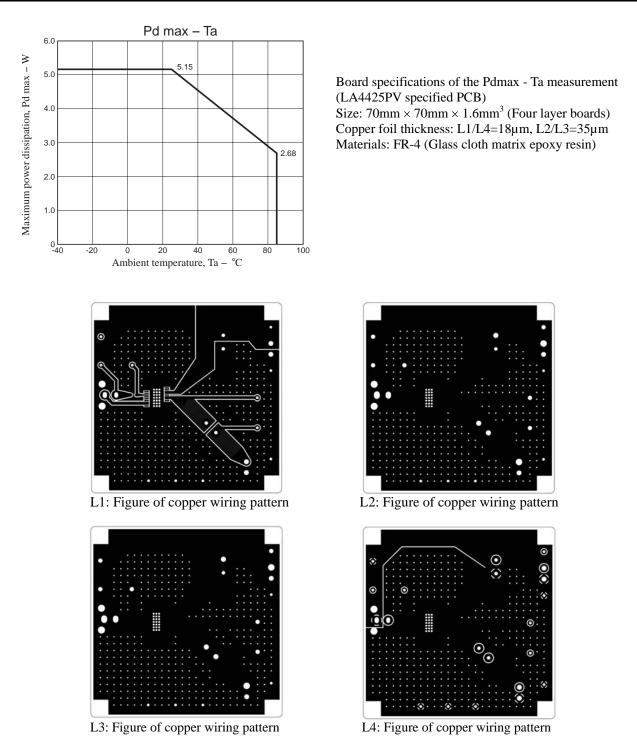
■ Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc. , please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Operating Conditions at $Ta = 25^{\circ}C$,

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		13.2	V
Recommended load resistance	RL		4	Ω
Operating voltage range	V _{CC} op		5 to 16	V
Operating load resistance range	R _L op	Under conditions where maximum ratings are not exceeded	2 to 8	Ω



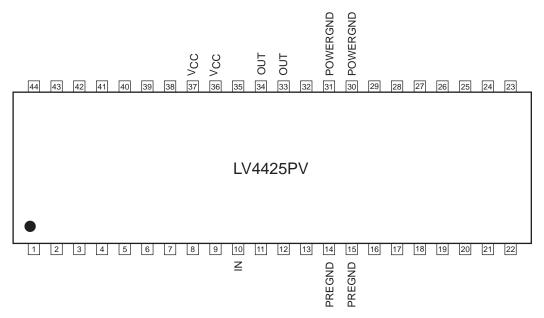

Parameter	Symbol	Conditions	Ratings			l la it
			min	typ	max	Unit
Quiescent current	Icco			65	130	mA
Voltage gain	VG	V _O = 0dBm	43	45	47	dB
Output power	P _O 1	13.2 V / 4 Ω , THD = 10%	4	5		W
	P _O 2	14.4 V / 4Ω, THD = 10%	5	6		W
Total harmonic distortion	THD	V _O = 2Vrms		0.1	1.0	%
Output noise voltage	V _{NO}	$Rg = 0\Omega$, BPF = 20 Hz to 20 kHz		0.15	0.5	mV
Ripple rejection ratio	SVRR1	Rg = 0Ω , BPF = 20 Hz to 20 kHz V _R = 0dBm, f _R = 100Hz	30	40		dB
	SVRR2	Rg = 0 Ω , BPF = 20 Hz to 20 kHz V _R = 0dBm, f _R = 1kHz		47		dB
Over-voltage attack	V _{CC} X	$Rg = 0\Omega$		21.5		V
Starting time	ts			0.35		s
Input resistance	R _{IN}			50		kΩ
Roll-off frequency	fL			40		Hz
	fH			90		kHz

Package Dimensions

unit : mm (typ)

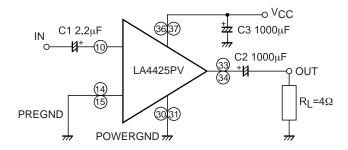
3333

Notes:


The data for the case with the exposed die-pad substrate mounted shows the values when 95% or more of the Exposed Die-Pad is wet.

- 1. For the set design, employ the derating design with sufficient margin.
- 2. Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as vibration, impact, and tension.

Accordingly, the design must ensure these stresses to be as low or small as possible.


- The guideline for ordinary derating is shown below:
 - (1) Maximum value 80% or less for the voltage ratings
 - (2) Maximum value 80% or less for the current ratings
 - (3) Maximum value 80% or less for the temperature ratings
- 3. After the set has been designed, be sure to verify the design with the actual product. Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc. Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction, possibly resulting in thermal destruction of IC.

Pin Assignment

- Connect exposed die pad on the back side to GND with a large pattern.
- Pins whose names are not given next to the pin numbers are all "NC pins" that are not connected to the chip inside the package, and they must not be used as relay pins.

Application Circuit Example

- On-chip overvoltage protection
- On-chip thermal protection
- On-chip pop noise reducing circuit
- On-chip output D.C. short protection

Pin Voltage at $V_{CC} = 13.2V$

Characteristics	Input	Pre GND	Power GND	Output	V _{CC}
Pin No.	10	14, 15	30, 31	33, 34	36, 37
Pin voltage (reference value)	(≈ 2V _{BE}) 1.4V	0V	0V	(≈ 1/2V _{CC}) 6.5V	(V _{CC}) 13.2V

IC Usage Notes

• Maximum ratings

If the IC is used in the vicinity of the maximum ratings, even a slight variation in conditions may cause the maximum ratings to be exceeded, thereby leading to a breakdown.

• Printed circuit board

When drawing the printed circuit pattern, refer to the sample printed circuit pattern. Be careful not to form a feedback loop between input and output.

Always use both pins of the Pre GND, Power GND, OUT and V_{CC} when designing the layout.

• Exposed Die-Pad

The exposed die pad on the back side of the IC must be connected to GND with a large pattern surface area.

• Load Resistance and Misoperation

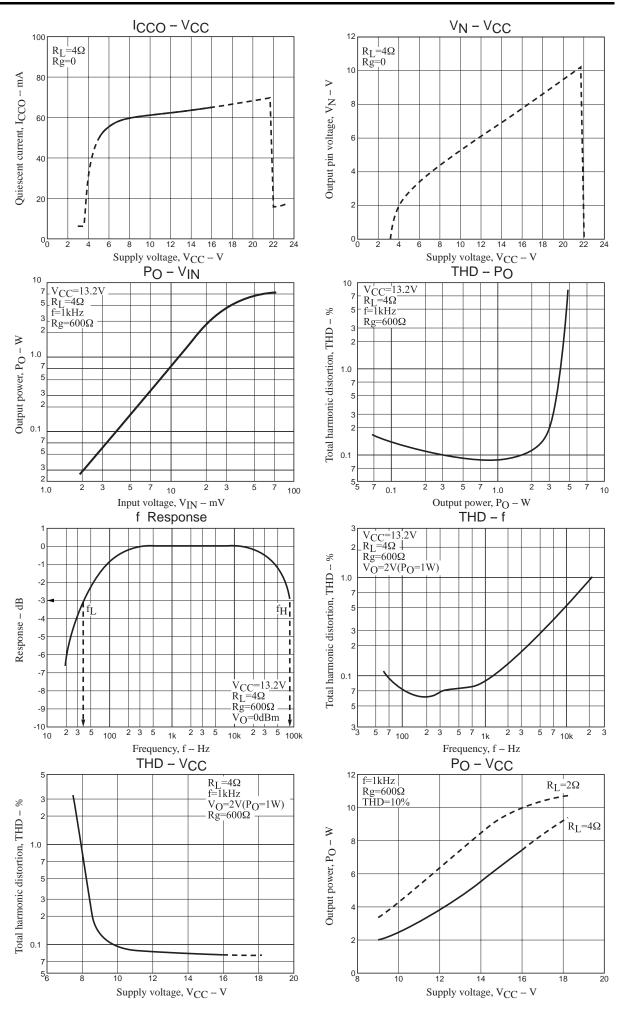
It should be noted that when $R_L < 2\Omega$ and V_{CC} is high, and the switch is turned "ON" when setting is for a signal (THD = 10%), the ground detector (current × voltage Schmitt circuit) operates momentarily.

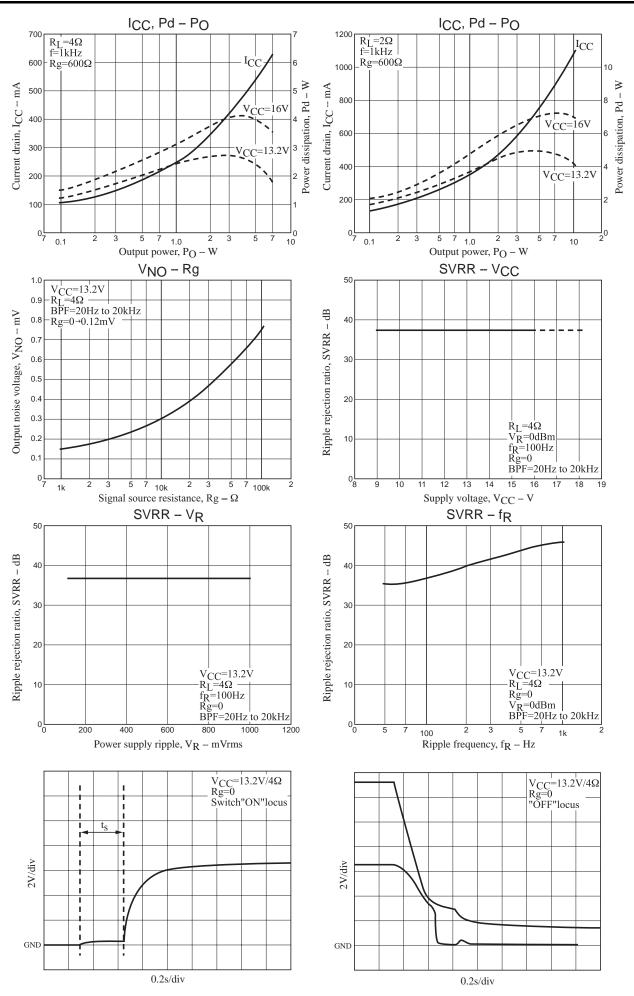
• Starting Time (t_s)

This is set at 0.35sec/typ, but it can be made shorter by making input capacitor Ci smaller, or longer by making it larger.

• Pop noise

The pop noise prevention circuit operates to reduce pop until Rg reaches $50k\Omega$. However, if Rg is left open, the charging route of input capacitor Ci is lost, so the pop noise reduction circuit stops operating and click noises become louder.


• VG/OSC


The voltage gain is fixed at 45dB inside the IC. It is impossible to change it externally.

Phase compensation capacitors (350pF/total) are connected between individual stages inside the IC, and the open loop gain is low. In addition, the upper and lower drives are made equivalent so that final stage current gain is adjusted, providing a measure against unwanted high-frequency parasitic oscillation peculiar to power IC's.

• BTL Connection

Connection is impossible with IC alone.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2012. Specifications and information herein are subject to change without notice.